Maple sugaring and the science of sap flow

What makes this possible?

The Science of Sap Flow and Maple Syrup Production

Basic physiology of maple sugaring

Maple syrup production possible - 2 unique properties of maple trees:

Ability to generate positive pressure in **xylem** sap (Allows sap to flow)

The high sugar concentration in spring **xylem** sap

Basic physiology of maple sugaring

Must also have the right weather conditions for sap to flow! Freezing nights followed by warm days

Phloem

Photosynthate (sugar) from source to sink

Xylem Water from soil to leaves (usually not sugars!)

Sugar maple cross section

The sap flow mechanism in maple:

Freezing and thawing temperatures are required

Freezing causes liquid to expand

Why doesn't sap exude during a freeze and shrink during a thaw?

Sugar maple wood section

Ice crystal growth (frost) occurs inside the air-filled fibers as the branches freeze. The water is supplied by the sap in the vessels.

← Vessel with sap

Temperature and pressure in the spring in untapped trees

But why does sap *flow* when we put a hole in the tree?

Atmospheric pressure lower than inside the tree ~ sap flows out of the wound!

Figure by: Tim Wilmot

TreeMet – www.uvm.edu/~pmrc

Maple syrup production

Photos by: Brian Stowe

Trees are tapped with cordless drills and plastic spouts are most common

Photos by: PMRC

Photos by: PMRC

Network of 5/16" plastic tubing connects to larger 'mainlines'

Sap flows from the network of mainlines into the sugarhouse

Many producers add vacuum to their tubing systems

Photo by: PMRC

Adding vacuum

Figure by: Tim Wilmot

Filtering

Solid material

Microorganisms After sap is removed from lines it is often filtered by UV light

Photo: Tim Wilmot

Sap storage

Sap is stored in large tanks for as short a time as possible

Photo by: PMRC

Reverse osmosis

Raw sap is ~2% sugar

RO concentrates sap (8-10%) without heating

Reduces: Evaporator fuel costs Boiling time

Photo by: PMRC

Reverse Osmosis

Boiling

Evaporators Many types

Fuel types Wood Oil

Photo by: George Cook

Evaporator basic anatomy

Back Pan

Evaporators

Back pan Where sap comes in

Deep flues facilitate heat transfer

From 2-~8%

Photo by: Tim Wilmot

Evaporators

Front pan Where syrup is made Several compartments From 8 to 65%

Photo by: Tim Wilmot

Boiling

Syrup Draw-off

Finishing

Get to appropriate density before packing

> If too high: Crystallization

If too low: Fermentation, mold, bacteria...

Photos by: Tim Wilmot

Filtering and packing

Syrup must be filtered to remove solids and make a clear product

Photo by: Mark Isselhardt

Filtering and packing

Filtered syrup is hot-packed into drums or smaller containers

Photos by: PMRC

Grading

Syrup is graded on four criteria: Color Flavor Density Clarity

Photo by: Mark Isselhardt

Color is primary determinant, but all syrup must meet the other standards, too

Grading

Different grading systems VT US Canada

Photo by: Mark Isselhardt

Different names, but similar standards

Only pure VT syrup can be labeled as VT syrup with a VT grade

Vermont Maple Syrup Grades

~ Vermont Fancy ~

Light amber color and a delicate maple bouquet. A mild maple flavor, excellent on foods such as ice cream which permit its subtle flavor to be appreciated.

~ Grade A Medium Amber ~

Medium amber color and a pronounced maple bouquet. Characteristic maple flavor, that is popular for table and all around use. Great on pancakes and french toast.

~ Vermont Grade B ~

The strongest and darkest grade of maple syrup. Primarily used for cooking and also popular for the table. Makes a great substitute for other sugars in baking.

~ Grade A Dark Amber ~

Dark amber color and a robust maple bouquet. This hearty maple flavor is very popular for table and all around use. Is often used to add flavor when cooking.

Frequently asked questions

Does tapping harm the trees?

Which grade is the best?

Which grade is the sweetest or thickest?

Proctor Maple Research Center

Photo by: Mike Vayda

Proctor Maple Research Center

Maple research conducted at UVM since 1890s PMRC established in 1946

Photos: PMRC