
Natural Resources Data Analysis – Lecture Notes 
Brian R. Mitchell 

V. Week 5: 

A. Multivariate AIC 

1. For multivariate techniques such as MANOVA or discriminant analysis, there 
is no single error sum of squares, and there is generally no likelihood listed in 
statistical output.  So how do you calculate AIC?   

2. Get the pooled error SSCP matrix (this is sometimes called "within groups") 
from your stats package.  Divide this matrix by n (sample size) to get the 
multivariate equivalent of the maximum likelihood estimate of σ2 ("divide by n" 
means you should divide each matrix element).  Then use a software package that 
can calculate the determinant of a matrix (the Excel formula MDETERM and 
Mathematica can both do this).  The determinant of the matrix is the value you 
would plug in as σ2 in the model selection spreadsheet we've been using in class 
(on the OLS page).   

3. K in this situation includes each unique element in the matrix (i.e. the diagonal 
and the elements above OR below the diagonal.  So K for a 5x5 matrix (i.e. 4 
predictor variables and an intercept) is 5 for the betas (predictor and intercept 
estimates) + 5 for the sums of squares (matrix diagonal) + 10 for the cross-
products (off-diagonal) = 20.  For a p x p matrix, the contribution of the matrix 
elements is p(p +1)/2. 

4. It turns out the B&A discusses multivariate AIC on pp. 424-426.  David 
Anderson clarified K in a personal communication. 

B. Discuss any analysis issues that have come up on individual projects 

C. Model Averaging: Parameter Variance Revisited 

1. There are 2 formulas for unconditional variance floating around. 

a) The formula presented in Burnham and Anderson (2002): 
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b) And the formula presented in Burnham and Anderson (2004)… as well 
as page 345 of Burnham and Anderson (2002): 
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c) The original formula uses the square root of the variance, and then 
squares the overall sum. 

d) In pages 344-345 of Burnham and Anderson (2002), they say that: 
(1) The first formula assumes a perfect correlation of estimates 
of θ from different models. 
(2) The first formula introduces inconsistencies because the 
weights are nonlinear (i.e. the weights are squared in the first 
formula, and not in the second). 
(3) The second formula is used in a Bayesian context when the 
model-averaged posterior is a mixture distribution, and can also be 
derived in the Kullback-Liebler framework. 
(4) The first formula produces a model-averaged variance that is 
less than or equal to the second. 

e) Another important difference between the formulas is that there is no 
rigorously derived covariance formula associated with the first formula, 
while there is for the second (it is presented in Burnham and Anderson 
(2004) and below in the section on model averaging an outcome). 

2. How big is the difference between the two formulas? 

a) Based on a quick look at some sample data, the difference is generally 
quite small (i.e. the change is in the third decimal place of the variance) if 
the parameter being averaged is in all models.  The difference can be quite 
large (up to an order of magnitude difference in just one set of sample 
data!) if the parameter is not in all models; this is the situation where the 
assumption of a perfect correlation in estimates of θ across the model set 
is grossly violated.   

b) My personal opinion is that the second formula is more defensible, and 
should be used instead of the first formula.  However, the first formula is 
in wider use (and seems to still be emphasized in Anderson’s workshops), 
so be sure to cite your use of this formula appropriately. 

D. Model Averaging: θθ
~

versusˆ  

1. The material in B&A (2002) is very confusing regarding θ̂ and θ
~

.  The 
difference between these two estimators hinges on what to do when a parameter is 
not in the model. 

2. Burnham and Anderson initially assert thatθ̂ and its variance are calculated 
by only using models where the parameter occurs. 



3. In contrast, θ
~

 is calculated by using a zero when a parameter is not present in 
the model; Burnham and Anderson (2002) indicates that it is not possible to easily 
estimate the variance in this situation. 

4. However, in their examples, workshops, and in Burnham and Anderson 

(2004), they describe θ
~

 while calling it θ̂ , and in Burnham and Anderson (2004) 
they imply that the variance is computed by using a zero for the estimated 
parameter and its variance in the usual variance formula. 

5. I think that the best match to the apparent intent of Burnham and Anderson is 
to: 1) use parameter estimates of zero and parameter variances of zero for 

parameters that are not present in a given model, and 2) call the estimators θ̂ and 

θrâv ˆ . 

E. Model Averaging: Unconditional confidence interval 

1. Once you have the unconditional parameter estimate and its variance, just 
calculate confidence intervals as you normally would.  One typical approach is 
based on the z distribution: 
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3. Demonstrate formula on spreadsheet. 

F. Model Averaging: Estimating an Outcome (y) and Its Variance 

1. Some background 

a) In the following discussion, it is important to distinguish between x 
values (e.g. an actual measurement of temperature or some other variable) 
and β values (e.g. the model estimate of the slope that is applied to the x 
values in the model equation). 

b) The good news is that you can always estimate your outcome 
parameter and its variance, even when your model set is not nested and 
you cannot model average your predictors. 

c) The bad news: 
(1) A model-averaged outcome and variance is only valid for a 
specific combination of x values.  For continuous variables, the 
mean is typically chosen, although you should consider calculating 
outcomes and variances for other important values.  If you are 
using categorical predictors, you will need to pick some 
representative scenarios to calculate outcomes for. 



(2) Calculating model averaged outcome variances can be a 
headache. 

2. Estimating the outcome  

a) When the model set is nested 
(1) Write out your global model equation 
(2) Substitute your model averaged beta estimates and your x 
values 
(3) Add them up! 
(4) Example: 

(a) Given the regression equation: y = b0 + b1x1 + b2x2 + 
b3x3 
(b) Given the model averaged estimates: b0 = 1.45, b1 = 
0.43, b2 = 2.33, and b3 = -0.68. 
(c) For x1 = 1, x2 = 0, and x3 = 3.4, 
(d) y = 1.45 + 0.43*1 + 2.33*0 – 0.68*3.4 = -0.432 

b) When the model set is not nested 
(1) For each model, write out the model equation, substitute in the 
model-specific beta values and your chosen x values, and calculate 
your model-specific point estimate. 
(2) Once you have a point estimate of the outcome for each model, 
apply the formula for a model averaged parameter to calculate the 
model averaged outcome estimate: 
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(3) Note that this method will also work for a nested set. 

c) Let’s program these calculations on a spreadsheet. 
(1) For nested models: 1) copy model averaged estimates to a new 
sheet, 2) enter values for x, 3) use SUMPRODUCT to calculate the 
outcome. 
(2) For non-nested models: 1) copy model estimates to a new 
sheet, 2) copy weights to the new sheet, 3) enter values for x, 4) 
use SUMPRODUCT for each model to generate a model estimate, 
and then use SUMPRODUCT with those estimates and the model 
weights to get the model-averaged estimate. 

3. Estimating the model averaged variance of the outcome 

a) How do you calculate the variance of an outcome? 
(1) This is a deceptively simple question.  What you are actually 
trying to do is considered “error propagation”; you are summing a 
series of terms, each of which has a certain amount of uncertainty. 



(2) The usual approach to dealing with this problem is the 
“Method of Moments”, which can get pretty messy and includes 
lots of partial derivatives. 
(3) Luckily, the problem is simplified in our case, since we are 
dealing with a linear equation, albeit one with correlated variables.  
The formula (from Hosmer and Lemeshow 2000, p. 41) to use in 
this situation is: 
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(4) What do we need to know in order to use this formula? [x 
values, variances, and covariances] 
(5) Let’s program this formula on a spreadsheet: 1) Decide on x-
values, 2) bring in variances and use SUMPRODUCT to multiply 
them with the squared x terms, 3) put x-values above and to the left 
of the matrix, 4) calculate a new matrix with the covariance term; 
clever use of relative vs. absolute formulas can speed this step up, 
5) sum the formulas in the new matrix, 6) add with the 
SUMPRODUCT of the variances and the squared x values. 

b) Method 1: Model averaged outcome variance based on individual 
model outcomes 

(1) For each model, determine the point estimate and variance of 
the outcome, using the error propagation formula and the same set 
of x values for each model. 
(2) Use the formulas for averaging predictor estimates and 
variances: 
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c) Method 2: Model averaged outcome variance based on model 
averaged predictor variances and covariances 

(1) Calculate the predictor variable model averaged variances 
using the usual formula: 
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(2) Calculate the covariance for each combination of predictor 
variables using the formula: 
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(3) Then use the formula for calculating the variance of an 
outcome (note that θ and τ are replaced by θj and θk): 
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d) Which method should be used? 
(1) Theoretically, both methods should produce equivalent results 
with nested model sets.  For non-nested model sets, Method 1 is 
the only option. 
(2) Method 1 has been tested in simulation studies (David 
Anderson, personal communication), and the results were good.  
Method 2 has not been rigorously investigated. 
(3) For my sample data set, Method 1 yielded a variance estimate 
that seemed reasonable; the variance was slightly larger than the 
variances for the most heavily weighted models.  Method 2 yielded 
a variance estimate that I felt was unreasonable; the variance was 
much lower than the estimates for the most heavily weighted 
models.  My belief is that a variance that accounts for model 
selection uncertainty should be larger than the heavily weighted 
models, not smaller. 
(4) Until this formula is revised appropriately, I suggest sticking 
with Method 1. 

e) Let’s program Method 1 on a spreadsheet: 1) Calculate model specific 
variances as above, 2) for each model, add the variance to the squared 
difference between the outcome estimate and the model averaged outcome 
estimate, 3) multiply the result by the model weight, and 4) sum that result 
across the models. 

f) Look at the difference between Method 1 and Method 2 on Brian’s 
model averaging spreadsheet.  

G. Examples of model averaging from B&A, Chapter 4 

1. Cement Data  

a) Discusses model averaging the outcome variable without actually 
going over the procedure (they use SAS to get model-specific outcome 
estimates and variances). 

b) Don’t seem too concerned that the unconditional SE (1.9) is 33% 
smaller than the bootstrapped estimate of the unconditional SE (3.0).  Note 
that if the alternate formula for variance is used, the unconditional SE is 
2.3.  However, the bootstrapped estimate of the SE would probably also be 
larger with this formula. 

c) In this example, when calculating model averaged parameters, 
Burnham and Anderson only use the models where the parameter appears.  
This produces a biased (large) result, as they discuss in sections 4.2.2 and 
1.6.  My impression is that they no longer recommend this procedure. 



d) They reduce their model set by 4 models (from 15 to 11, NOT 16 to 12 
as they mistakenly write) because of colinearity between variable 2 and 4.  
This is a useful example of when you may be forced to alter the model set 
during an early stage of your analysis; Burnham and Anderson do not feel 
that this hurts a claim to a confirmatory analysis, and I agree. 

e) They improperly apply their procedure for estimating parameter 
importance by using it on an unbalanced model set.  In the original (full) 
model set, each parameter was represented in 8 models.  In the reduced 
set, variables 1 and 3 were in 6 models, and 2 and 4 were in only 4.  It was 
simply not valid to use their variable importance approach here. 

2. Durban Storm Data 

a) As usual, I’m not convinced by the sample size used here.  They 
suggest that sample size is 2,474 (once each week for 47-48 years).  
However, since the data are subsequently collapsed into counts by week, I 
think the sample size is 52 (essentially, the data for each week estimates 
the likelihood of rain in that week; we have the advantage of a good 
estimate of that probability, but we don’t get to inflate the sample size).  
They seem to be using the correct sample size in table 4.4 for degrees of 
freedom, but they should clearly have used QAICc instead of QAIC in this 
case. 

b) The discussion of calculating the confidence interval of the 
probability of a storm for a given week is a little unclear.  Essentially, they 
are calculating a model averaged outcome based on individual model 
estimates of the outcome and variance.  This procedure is complicated by 
the logistic model; the safest strategy is to calculate your estimates and 
confidence intervals in logit space, then transform the end points into 
probabilities.  By doing this for each week, they were able to generate the 
data for figure 4.2. 

3. Flour Beetle Mortality 

a) Between 49 and 63 beetles tested at 8 different dosage levels, 471 
beetles total.  The models work with the probability of mortality at each 
dosage level.  Is the sample size of 471 that Burnham and Anderson use 
really appropriate?  My feeling is that the correct sample size is 8 (we get 
a good estimate of the mortality rate at each dosage level by using lots of 
beetles; but the number of individuals used to get that estimate is not 
relevant to the question at hand).  I think that they should have used AICc 
for model selection. 

b) Dosages ranged from 49 to 77 mg/L.  How reasonable is it to use any 
model to estimate the effect of a 40 mg/L dose?  In this type of problem 



we can expect the mortality to be lower than at the 49 mg/L dose… but I 
don’t think this sort of extrapolation is good science. 

c) I find it interesting that they use different link functions for models in 
their model set.  My impression was that this violates the mandate against 
transforming outcome values… but on further reflection and digging, I 
discovered that link functions are apparently applied to the predictors in 
statistical software (e.g. the program MARK help on link functions shows 
the functions applied to the predictors).  So apparently it is OK to compare 
models that use different link functions (e.g. probit, logit, etc.).  It is still 
not OK to blatantly transform an outcome variable (e.g. y in some models 
and log(y) in others). 

H. Writing about and presenting model selection results 

Burnham and Anderson (2002) and Anderson et al. (2001) make numerous 
suggestions of things to include in papers that use model selection: 

1. State your objectives and note whether your analysis is confirmatory or 
exploratory (Introduction) 

a) If your analysis is confirmatory, make sure the details in your Methods 
section back this up. 

2. Describe and justify the working hypotheses and the model set, and how the 
models relate to the study objectives (Methods). 

a) For large model sets, I recommend moving much of the model set 
description to an appendix.  While it is OK to fully enumerate a large 
model set in a thesis or dissertation, I doubt that many journals will want 
to see this. 

b) It may be simpler to describe your model set based on groups of 
parameters (e.g. the model set used four functional forms for time and four 
for season, in all possible combinations, to produce 16 models). 

3. Justify your choice of AIC and other formulas with specific references 
(Methods) 

a) You will need to cite your choice of AIC formula, model averaging 
formulas (i.e. parameter estimate, variance estimate, covariance estimate). 

4. Document your methods and use citations whenever possible, especially when 
they differ from the “typical” approach (Methods). 

a) For example, the appropriate reference for the use of zeroes in the 
point estimate and variance formulas when a parameter is not in the model 
is the monograph Burnham and Anderson (2004); in Burnham and 



Anderson (2002) they use a different notation and do not overtly advocate 
this approach. 

b) Some procedures that I advocate are not necessarily cited clearly 
anywhere (e.g. using a zero for the variance when the parameter is not in 
the model).  In these cases, you will need to justify your approach. 

c) Don’t forget to reference the notations you use (e.g. wi for Akaike 
weights). 

5. Assess the fit of your global model (Methods) 

a) Your methods section should state the procedure you use to assess fit 
(e.g. residual plots, Hosmer-Lemeshow test, etc.).   

b) It is probably not necessary to present fit results (although it is worth 
including for a thesis or dissertation).  For a research paper, it will likely 
suffice to say in your methods that the global model did indeed fit. 

6. Include a table of model selection statistics, including ln(L), K, AIC, AIC 
differences, and Akaike weights (Results). 

a) Sometimes the raw AIC value or the ln(L) is not included; this can 
save space and one can be calculated from the other 

b) It usually helps to sort by decreasing Akaike weight. 

c) For large model sets, include all models with Akaike weights high 
enough to affect parameter estimates; exclude the rest and use a footnote 
stating that n models were excluded from the table and that the models did 
not affect inference. 

7. Estimate important parameters and include confidence intervals (Results). 

a) If you are model averaging an outcome, make sure that you choose an 
appropriate and representative sample of different predictors for your table 
or graph. 

8. Don’t mix frequentist and information-theoretic approaches 

a) Avoid using the terms “significant” and “rejected”, and don’t use 
statistical significance tests. 

9. Acknowledge data dredging. 

a) Emphasize that it is exploratory and that results need to be confirmed 
with future studies or a new data set. 



10. In many situations the terms “independent” and “dependent” do not make 
sense when applied to variables; x variables are often correlated!  It is clearer to 
use the terms “predictor” or “explanatory” and “outcome” to refer to x and y 
variables, respectively. 

11. “Avoid confusing low frequencies with small sample sizes.  If one finds only 
4 birds on 230 plots, the proportion of plots with birds can be precisely estimated.  
Alternatively, if the birds are the object of study, the 230 plots are irrelevant, and 
the sample size (4) is very small” – Anderson et al. (2001), p. 377. 

a) I couldn’t agree more with this statement!  I just wish it were applied 
more carefully in the examples that Burnham and Anderson (2002) use. 
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